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We report results of simulations of a model for concentrated aggregated colloidal dispersions under shear
flows. In an effort to study trends in rheology for varying colloidal interactions, we study a reduced hydrody-
namic, frame-invariant, pair-drag model in which a long-range, many-body mobility matrix is generated just
from resistance pair-drag terms that include lubrication. The model also includes depletion interactions, repul-
sive surface forces, and Brownian forces. We consider the steady-state rheology of the model which we varied
in volume fraction between 30% and 53%. We are able to fit our data to experimental results. The rheology of
the model is that of a power-law shear-thinning fluid with relative viscosity scaling with shear rajg as
~7%~ % and an exponent close to universal over a range of particle volume fractions 0.45-0.53. We also
obtained a shear-thinning exponent that appears to be just weakly sensitive to the hydrodynamic model. The
exponenta varies from 0.73:0.02 for weakly aggregating systems to 08603 in the case of strong
aggregating systems and the experimental data. As we lower the volume fraction we find a model-dependent
transition to shear banding, where the rheology is effectively lost. We also find evidence of transitions between
different shear-thinning regimes at the higher volume fractions when the particles are arranged in the familiar
strings phase§S1063-651X%97)13212-3

PACS numbes): 47.50+d, 83.50—-v

I. INTRODUCTION from their models in an attempt to gain some insight, al-
though these algorithms are often physically naive represen-
Aggregated colloidal suspensions show a variety of nontations of true systems. The simulations presented here offer
Newtonian rheological properties, such as yield stress, shean improvement on the nonhydrodynamic models by incor-
thinning, shear thickening, thixotropy, and rheopeXy. porating a computationally efficient, but approximate, hydro-
Even at moderate concentrations, aggregating suspensiodgnamic model that respects some, but not all, of the correct
become “gel-forming” networks, considered to consist of physics of these interactions under shear flow. It includes the
continuous or percolating networks of particle aggregateseading-order terms in the mobility matrix in the limit of
prior to settling(sedimentation[2], and are widely regarded concentrated systems and should therefore be seen as a
as “colloidal gels” akin to polymeric systemi&]. In these  strong-coupling approximation; full details are given else-
microstructural fluids, the suspended particles interactvhere[10]. We emphasize that our aims at this stage are to
through interparticle (conservativg hydrodynamic, and study trends in colloid rheology and to motivate new theory.
Brownian forces. Under equilibrium conditions, it is the At lower concentrations than those of interest here, there
competition between the interparticle and Brownian forcesare many theoretical models of the shear behavior of aggre-
that determines the microstructures. However, when a sheagateg11-15. All these theories make untested assumptions
ing motion is introduced into the system, hydrodynamicabout the microstructural behavior of the dispersion. How-
forces must also be considered along with the interparticlever, a common ingredient in most of these theories is the
and Brownian interactions. This highly nonequilibrium stateidea that the stress in an aggregated system is carried through
raises many interesting questions about the microstructuralin open network that consists of the whole aggregate. The
organization under the influence of shear flows and the sulsubsequent rheological behavior comes from the gradual
sequent rheology of such systems. However, theoreticddreakdown in length scales over which the stress is carried,
progress is hampered by the lack of insight into structurafor example, breakup of fractal networks; see Rdf4].
mechanisms. These assumptions can be effectively assessed by computer
Computer modeling is seen by many to be a route formodeling. Our recent studies on the microstructural evolu-
ward, but despite considerable effort, accurate algorithms fotion of stress-bearing networks in concentrated, aggregating
modeling the flow of particles concentrated in a hydrody-colloids[16] suggest that within the bulk there are dominant
namic medium[4-7] are not yet efficient enough to allow stress pathways consisting of rodlike particle structures. The
studies far from equilibrium on relatively large systemsresulting rheological behavior can then be described in terms
across a parameter space of colloid interactions. Some awf the rupture and reformation of these clustelrg].
thors[8,9] have simply dropped hydrodynamic interactions Most of the simulations to date have involved models
without hydrodynamic interactions employing the free-
draining approximatio9,13,18—2Q. At this level, Melrose
*Electronic address: 1s10009@phy.cam.ac.uk and Heyeg9] performed simulations on flowing aggregates
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where they predicted gross structural changes under shear —R-(V—V+F¢+FB—(R-V,) =0, 3
involving layering. In the models without hydrodynamic in-
teractions, close particles do not feel divergent viscous intefwhereV, are a set of velocities defined at the particle centers
actions _under relative motion. Sh_ear is appll_ed by_coupl_lngby I with Lees-Edward$26] (i.e., shear periodjcboundary
the particles to a background affinely shearing fluid whichcongitions. By imposing periodic boundary conditions on the
they do not dlst_urb. The;e ong-part_mle drag terms determln@emcity differenceV — V,,, we thus impose overall shear glo-
that the model is not Galilean invariant, and so-called meanpa|ly on our sample without locally constraining the flow.
field hydrodynamicg8] as formulated does nothing to cor-  \we now discuss the long-range nature of hydrodynamics
rect this fa|I|ng._ Limited studies have been made on th&n a concentrated system and argue that a long-range mobil-
stresses of static aggregates by shear flow that do inCludg, matrix can be formed from pair, near-field resistance
hydrodynamic interactiori21—-23 via low terms in moment  tarms_ It is not generally recognized that one must carefully
expansions. . _ _ distinguish between the long-range nature Mf and the
Hydrodynamic interactions must be important in real syS—y,,ch shorter range k. ConsiderM: elements of this can
tems. Several methods have been proposed for accurately jnterpreted in terms of the following thought experiment.
computing hydrodynamic |_nteract|or[31—37] -and research - apply a unit force to one particle and measure the corre-
continues. Moment expansions 46§ O(N) in the number  ponding particle velocities under conditions in which they
of particlesN, to compute the motion at one time step, al- gre force-free. Approximating the suspension as a fluid of

though anO(N?) method without Brownian forces has been viscosity 7 leads us to estimate the translational elements of
proposed4]. None of these methods has yet been shown tq; 55

be computationally feasible for large systems with colloid

interactions. The lattice Boltzmarii] method has not been Mij~1/ 7)) except Mj=~1/(7:d), (4)
implemented with the moving boundary conditions required

to impose shear flow and would need fine meshes to catcliherer; is the center-to-center separation of particlesd
the divergent interactions between particles. Less accurate andd is a particle diameter. The key features\fare that
methods have been studif2#,25, the most extensively ap- it falls off as a slow power of distance and all elements are
plied being that of Bossis and Brad4]. However, the scaled by the same amplitudg .

method isO(N?), and results for dynamic simulations of  The thought experiment for the elementsRfis to give
only small systems in three dimensio(8D) have recently one particle unit velocity while holding all the others fixed,
been published. The method of REZ5] fails to handle close  then measuring the forces on the particles. In concentrated
particle surfaces above 40% volume fraction and has not yefystems, the near-neighbdNN) and diagonal terms are

been developed with colloidal interactions. ~ dominated by lubrication effects and diverge at small inter-
We argue that the lowest-order approximation that retaingarticle gaps as

much of the physics of hydrodynamic interactions is in the

strong-coupling limit of concentrated systems—frame- — 7002
invariant pair-drag modeith divergent lubrication interac- Rij”m for rj~d and Rj=-2> Rw. (5
tions. .

The equations of motion are given by a balance of forces(yhereas the longer-range element&Roan be estimated by
torques calculated as a sum over all nearest-neighbor pairs Qﬁalogy with a porous medium and give

hydrodynamic, conservativécolloid) forces, and random
Brownian forces: — pod?
C.B_ Rij~—3—, r;>d (6)
—R-V+F-+F°=0, (1) i
whereR, F, andV denote a 61X6N drag matrix and Bl (this can be seen from the Green’s-function solution of the
force and velocity vectors, respectively. We deal first withgrinkman equation and by theory including many-body in-
the need for frame_ invariance. 'I_'he hy_drodynamic forces{eraction$. The long-range part oR falls off as a much
torques on the particles can be viewed in matrix formas  steeper power than forl and, moreover, the divergence with
=M-Fy or, equivalentlyFy=R-U, where, in principleU  close interparticle gaps enters into the diagonal and nearest-
is a vector of fluid and particle velocities. In the absence ofejghbor terms but not the long-range terms.
an explicit fluid velocity field in the simulation, we argue  For concentrated systems we find it compelling to exploit
that it is physically incorrect to break fram@alilean in-  the dominance in the resistance matrix of the nearest-
variance in the particle velocities; we therefore build the i”'neighbor and diagonal termgfor which the dominant
teraction model out of Galilean-invariant dissipative interac-squeeze modes diverge as the interparticle gap and at that
tions, that is, the matriR has the symmetry level are pairwise additiye over the longer-range terms,
R-(V+Ugng=R-V, ) whic_h have nondiverging amplitude amdompared toM_)
relatively rapid falloff with distance. Invertin@R to obtain
where U, iS @ constant velocity field or a rigid rotation. M, it is evident in concentrated systems, as the gaps become
The frame-invariant formulation implicitly assumes that in small, that the leading behavior of all the mobility elements
the problem of interest, the average fluid flow field is thecomes exclusively from the nearest neighbors and diagonal
same as the average particle velocity field, so such a formuerms ofR. In our earlier discussion d¥l [cf. Eq. (4)], this
lation therefore cannot model many problems such as sedieading behavior, proportional to the interparticle gaps, is
mentation. For a shear field we rewrite(1) in the form hidden in the factorsy{l.
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The algorithm below identifies nearest neighbors andechnique of the present simulations is presented in the next
forms R pairwise out of terms including the divergent parts section. Section Il focuses on the results obtained from the
found in the lubrication approximation. Inversion of the simulation studies.
sparse matriR is performed by iterative techniques. As has
often been stated, hydrodynamic simulations need to prop- Il. SIMULATION METHOD

erly include the many-body and long-range naturdlgfand W ider ti les | ith t 10 the Vi
the approximation at high concentrations includes the € consider time scales long with respect 1o the viscous

leading-order terms to this, However, it is an inaccurate ap[nomentum relaxation time of the suspension so that we treat

proximation to the full hydrodynamic matrices, since it ig- the particles at the Langevin-Smoluchowski level and the

nores localN-body effects inR itself in which the flows fluid by the creeping-flow equations. Stick boundary condi-

s . tions are imposed on the fluid at the particle surfaces.N-or
within the narrow gaps are coupled to the flows in the local

. X .~ “'such particles, immersed in a Newtonian fluid with viscosity
pore space around the particle. Indeed, relative tangebtial w and density, the equations of motion are described by the

shearing motion has a coefficient diverging only as o pled N-body Langevin equation expressing force bal-
In[d/(r;;—d)] and although we include this in the computa- gnce:

tions, it is, in practice, not much more significant than the

more distant elements &, which we neglect. 0=F"+FP+FB, (7
Other workers are reporting pair-drag modg®y] that

include additional terms that break Galilean invariance. Tolhe 6N force/torque vectors represefit the hydrodynamic

be clear, we will refer to the model used here aame- forcesF" exerted on the particles due to their motion relative

invariant, pair-dragmodel. to the fluid, (i) the interparticle force&", and(iii) the ran-
We compare our simulation studies with recent experi-dom Brownian forces®.

mental results on relatively well controlled weakly aggre-

gated systemg28,29. In particular, Buscall, McGowan, and A. Interparticle forces

Morton-Joneg28] carried out work on depletion-flocculated  the interparticle interactions include the contribution

systems where the colloid particles had a thermodynamigom the depletion interaction whose attractive foféeis

volume fraction of 47%, through the combination of the hy- gpproximated by31]

drodynamic volume fraction of 40% plus the presence of a

polymer-coated surface. Aggregation is induced through the

addition of a nonadsorbing polymer into solution. The result-

ing osmotic imbalance arising from the exclusion of the

polymer particles from a region around close-approachingvhereL=1+ a/d, with d being the diameter of the colloid

colloid particles then leads to an effective attractive-well po-particle, a twice the radius of gyration of the added polymer

tential interaction, which depends on the size ratio of the twespecies at a volume fractiop,, r;; the separation between

species and the concentration of the polymer particles. Ththeith andjth particles, andd(x) a unit step function.

resulting experimental attractive-well depths were estimated The interaction strengtk) depends on the volume frac-

to lie between—2.5gT and —25kgT. However, the colloid tion of polymer¢, and the size ratio of this added polymer

particles are stabilized from coagulation in the deep primanto the colloid particlex/d:

minimum at very close contadvan der Waals minimum,

Umin<—100gT), through the inclusion of the surface poly- 3¢y

mer coat. Q= 2(ald)® ©
There are many ways to induce particle aggregdtaf,

but in an attempt to model depletion interactions, in ourFor a typical ratio ofa/d, and a sensible value fap,, Q

simulations we approximate the aggregating potential as thaanges between 1000 and 10 000.

proposed by Asakura and Oosay&l]. In the simulations, We use linear springs as the crudest model of conserva-

these weak aggregating forces provide an attractive interagive, repulsive forces between the adsorbed polymer coats.

tion of the order of —10kgT. In an attempt to model The repulsive forcéR between spherdsandj separated by

polymer-coated spheres, we include a steep repulsive spring; is

force at the surface of our particles. This spring force effec-

QkgT
d

fA(r) =~ [L2=(rij/d)*IH(Ld~r;;), (8

tively mimics the osmotic part of the polymer coat. These R gl

latter forces are neglected in most theories, but actually turn Fr(rip)=—n; a {Fo—(Fo/dc)(rij—d)}

out to play a significant role in the simulations. However, all

other aspects of this layer and interactions with the polymer for (rjj—d)<é;, (10
species in solution are ignored. In particular, the viscous in-

teractions due to the drainage of solvent through the polymer =0 for (rjj—d)>d

layer are neglected here.

There are several recent publications containing details ofhe Hookean spring coat thicknedg’2 sets how much the
the simulation method, both carried out at the Rouse levethermodynamicsize of the particle exceeds theydrody-
[8,32] and those which include detailed hydrodynamic inter-namic size of the particle. The terrfry sets the maximal
actions[10,33. Full and explicit details of our algorithm are force the spring can supply and is set td* I6r all simula-
presented elsewhefd 0], so only a brief overview of the tions.
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FIG. 1. The equilibrium interaction potential between particle
pairs experiencing the attractive depletion forces with repulsive

forces approximated by a Hookean spring surface of thickness colloid particle
0.005 particle diameters. Polymer concentratipp=0.7, polymer/
colloid size ratioa/d=0.1 (Q=1050.0). FIG. 2. The computational geometry of a single computational

) ] ) ] o box for the simple shear-flow simulation, with the flow) ( gradi-
Figure 1 shows the interaction potential arising from theent (y), and vorticity @) directions(axes defined as shown. The

combination of the depletion interaction together with theimposed shear rate is performed by Lees-Edwards boundary condi-
repulsive surface forces. In the simulations reported belowtions across the top surface of the periodic boundaries.

all distances are measured in terms of the particle diameter

d, which, for convenience, is set to unity. The coat thicknesserms or other hydrodynamical modes, the scaling exponent
parameter §,=0.01d, ¢p=0.70, and the size ratiax/d remains approximately constant.

=0.1; consequently, foQ~1000, the particles at rest are  Random forces and torqu&®, when included, obey the
aggregated in well depths of orderlOkgT. Two systems at  fluctuation-dissipation theorendFBFE) =2kgTR. Including

higher ¢,, are also presenteig. 7). Brownian forces in the equations of motion is computation-
ally expensivele.g., fivefold for the typical data hereSolv-
B. Hydrodynamic interactions and equations of motion ing for the particle motion, it is necessary to numerically

§olve Eq.(7) for the particle velocities/. Thus Eq.(7) be-

The hydrodynamic model, as mentioned earlier mtmducetcomes[cf. Eq. (1)]

a resistance tens®, a sparse matrix, acting between neares

neighbors such that the hydrodynamic force is give
£q.(2)] e avendne ~R-V+FP+FE=0, (13

FH=—-R-V. (1) which generates long-range correlations in the particle mo-

" » , tion through the inversion dR, which has the computational
TheV are the &N velocities and angular velocities, aRdis  arit of being sparse and is, in principle, &{N?) opera-

actually a 8N 6N particle-configuration-dependent matrix. tion, although we find that the practical scaling to achieve
For the nearest-neighbor hydrodynamics drag we use thg g accuracy is more lik&l*5[10]. The flow is driven by

leading singular terms in the lubrication approximation, the| ces-Edwards boundary conditiof6] on systems in spa-

most divergent being the squeeze mode. The other modega)\y periodic boundaries. The computational geometry is

arising from the shear and transverse motion of neighborgwn in Fig. 2, where the flowx], gradient §), and vor-

are ngarlthmlcally d|vergent with respe_ct to the gap. W_eticity (2) directions(axes are also defined.

also include terms due to higher orders in the gap expansion |, ‘simulations of sheared aggregates when Brownian

which are also logarithmically divergep6,34]. To Ieahding forces are neglected, the physics is solely determined by the
orderin the intersurface gaps, ttsgueeze-modercef;” on  competition between the colloid interactions and the shear

particlei is given by forces. We introduce a dimensionless shear Vétavhich is
the single parameter determining the physics at a particular
fiH= —2 (37r,ud2/8hij){(vi—vj).nij}nij , (120  volume fraction. It is defined as the ratio of a shear force in
j

the solvent in the absence of particles to the maximum at-

. . . . , tractive force of a particle-particle borfg,,,(r) at a separa-
where u is the viscosity of the solvent being the particle P P thad ) P

tion r=d:
diameter, the sum is over nearest-neighbor particlés; is
the gap between the surfaces, is the unit vector along the 2
; ; ; ; i Fshear pud=y
line of centers to j, andv;, v; are the particle velocities. W= = 14
i , , : (14)
For many of the results below, we will study models with fmafd) QkgT/d

just the squeeze interactions. This approximation is justified

as we find that the scaling relation between stress and sheblere the dimensionless shear ralteis defined with respect
rate for the rheology with just squeeze lubrication interacto the solvent viscosity, d is the particle diameter, ang
tions is relatively insensitive to the hydrodynamic modelhas already been defined in H). The choice of the defi-
used in the simulations—whether we include higher-ordemnition of W is convenient in the following data plots. If
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Brownian forces. are includedy is related to the Peclet 10°
number, Pe ud3y/kgT through the relation

W=PelQ, (15

and all of the following rheology plots will be given in terms
of the relative viscosityy, of the bulk to that of the solvent
and the dimensionless shear r&te Since our studies are
always at largeQ (Q>1000), we are always in the phase-
separating region. IV, we only vary the ratio of the shear o on s

forces to the colloidal forces. We do not vary the ratio of the a--0 Nﬁﬁiefzgfgazi:?mm

Brownian forces to the colloidal forces, hence as we lower

W, although Brownian forces will certainly become increas- B T T BN e 0

ingly important relative to shear, the system remains in the Peclet

phase-separating region in which colloid forces dominate _ ) _
over Brownian forces; see Fig. 6. FIG. 3. Rheology at 45% volume fraction: a direct comparison

It must be noted that Eq14) involves only a crude esti- between an aggregating system of Brownian spheres, which in-

mate of the shear forces on a particle in the bulk suspensio{'Udes depletion interactions, with a system of nonaggregating,

The parametewV’ = 5, W will provide a more accurate esti- Brownian spheres, which has no aggregating forces. The aggregat-

. . . ing system experiences an enhanced viscous response over the non-
mation of the ratio of the bulk suspension forces to the ag- gsy P P

gregating forces, bug, has to be computed from the simu- aggregating system.
lation.

Relative Viscosity 1,

studied encompassing a wide ranggdifnensionlessshear
C. Computation of stress rates (102<WQ<10®). For simulations carried out with-
out Brownian forces, the time step was 0.002 in units where

The rel_at|ve .;"Siostﬁw?{r ' fotlﬁflne(? as tth_e ratio of the sus- the shear rate and the particle diameter are both set equal to
pension viscosityy to that of the solvent viscosity, can be unity and we used a first-order time-step algorithm for mov-

calculated from the bulk stress of the suspension, defined b|¥| . . .
X ) ) o g particles. The typical number of time steps for runs were
a sum over all nearest-neighbor interacting pairs:

100 000—200 000, with times to reach the steady state

1 20 000-50 000 steps. In the cases of simulations that in-
=0 .Z fiirij (16) cluded Brownian motion, we had to switch to a predictor-
J corrector algorithm with a variable time step ranging from

76 73 .
wherer;; is the edge vector an is the volume of the 107° to 10°°, and run for up to 1btime steps.

computational box, anfj; is the sum of the hydrodynamic
[Eq. (12), for examplé and intercolloid particle pair forces lll. RESULTS
(8)+(10). The Brownian contribution to the stress tensor is
properly computed elsewhef&0,35. Note that the shear-
gradient-flow element of is the relative viscosity.

From the above definition of the relative viscosity and
from Eq. (16) we obtain, for the total relative viscosity,

There are two regimes of volume fraction to be consid-
ered. For volume fractions of 45% and above our systems
exhibit shear-thinning behavior, which we are able to study
and characterize in terms of shear stress and relative viscos-
ity as a function of shear rate. We are able to examine the
17) effects of volume fraction(Fig. 5), hydrodynamic force

model (Fig. 6), and system siz€-ig. 4) on the rheology of
these systems. Over a large range of shear rates these sys-
tems obey that of a power-law, shear-thinning fl(kgs. 5
and 6. At high shear rates we find evidence of a transition
from the thinning regiméFigs. 5 and & We also investigate
the dominant contributions to the stress tensor. We angularly
decompose the stress contributions with respect to particle
D. Simulation strategy “bond” angle (Fig. 12.

The results presented here are for monodisperse sphere ,By contrgst, simulations at_40% volume fraction undergo
whose initial random configurations were generated byshear banding and we effectively suffer a loss of rheology
Monte Carlo procedures. We formed configurations at rest™'9- 10- We present snapshots taken of particle configura-
without aggregating forces, and then turned on the shear arfipns that show the structu_ral organization that occurs when
the aggregating forces together. As we will see below, Fig. 75h€ar banding takes placgig. 9).
our simulations lie in the second half of the shear thinning
region where much of any rest structure is lost. This proce-
dure in the simulation is equivalent to those experiments of
Hunter and Frayng36] in which all structure was destroyed =~ We compare the simulation rheology data at 45% volume
by high-flow treatments prior to low-shear studies. A numbeffraction, in Fig. 3, between Brownian spheres with aggregat-
of simulations were carried out for each volume fractioning forces to that of Brownian spheres without aggregating

H P B
n=1+n +n +

where the hydrodynamic, interpartidlsum of repulsive and
attractive termg and Brownian contributions to the relative

viscosity are denoted agl', 77 (=7 "+ 7 ), and7° re-
spectively, and the unity contribution is that of the solvent.

A. Rheology
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viscosity 7., being reached at the end of the shear-thinning
curve. We only see shear thickening with this strength of
aggregating force at the very highest shear ragds50%,
W=1000Q). The curve has an effective plateau over a wide
107 range of(high) shear rates. It is clear that system-size effects
Dimensionless Shear Rate W become increasingly pronounced as we lower the number of
particles per unit cell. This can be explained due to limiting
namics is approximated by the squeeze lubrication termsUaggd factors affecting the size of dominant, stress-bearing clusters
=—9kgT: system size effects are investigat@l for N=50, 200, [17]. o o

and 700 particles in a simulation cell. For the 200-particle system The individual components contributing to the total rela-
(b), contributions to the total viscosity are from the Hookegtt, ~ tive viscosity, Fig. 4b), demonstrate that the dominant con-
depletiony™, and squeezey!' forces, respectively. tribution to the curve is that of the Hookean tefrapulsive

interparticle force Contributiomrp R). In contrast, the com-

forces. It is clear that the aggregating system experiences 3, ingredient in most theories is the stretching and break-
large viscous enhancement over the nonaggregating SVSteEHg of elastic bonds; while this is certainly occurring, the

In fact, their respective viscosities d_|ffer by an order of Mag- e sults here suggest that over a range of concentrations stud-
nitude over the shear-thinning region. The presence of thFed (45-53 %, the dominant positive contribution to the vis-
aggregating forces results in extended structures within the . ' P . .

gpsity comes from the compression of particle surfaces

behavior is an increase in viscosity over that of a non-phasea-mdlor coats. The depletion tenattractive interparticle

separating system. force contributionnrp A) contributes negatively overall to the
Note that the system with just Brownian forces first sheawiscosity, approaching zero as the end of the shear-thinning
thin and then thicken at higher shear rates. Due to the stifeurve is reached. The squeeze téhydrodynamic contribu-
coats, thickening behavior is not seen in our model aggregation #'), however, changes sign from low to higher shear
ing system until we reach much larger shear rates, and theates and then continues to rise gradually with increasing
only to a very minor degree. shear rate. The overall contributions from the squeeze and
We show several rheology plotEigs. 4—6 pertaining to  the depletion terms are negligible in comparison with the
several parameter changes in the simulations: volume fraddookean contribution throughout the shear-thinning region.
tion, hydrodynamic interactive models, and system sizéAt first sight, this is quite puzzling, as there is clearly an
(number of particles and computational box §ide Fig. 4  effect from the aggregating forces on the viscosity values—
the rheology plots at particle volume fraction 50% arecompare the aggregation viscosity data with that of the non-
shown. Figure @) compares viscosity values for several aggregating systems’ results in Fig. 3. This will be further
system sized\ =50, 200, 700 particles per unit cell, whereas discussed below. The shear thickening is due to an increas-
Fig. 4(b) displays the contributions to the total viscosifgr ~ ing hydrodynamic contribution at the higher shear rates.
the system containing 200 particles Figure 5 examines the variation of viscosity with volume
The phase-separating systems experience an interactidraction. Again, these simulations were carried out with the
potential-well depth of-9kgT due to the depletion forces, hydrodynamic interactions approximated by the squeeze
and are sheared until the steady-state regime is achieved overm only and without Brownian forces. The aggregation po-
a wide range of shear rates. The total relative viscositytential has its minimum at roughly 9kgT, and the compu-

~250 I I I L
1 0—6 5 4 3 -2

FIG. 4. Rheology at 50% volume fraction where the hydrody-
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FIG. 6. 7, as a function ofW at $=0.45 (Q=1050.0). The FIG. 7. Comparison ofy, for concentrated aggregating suspen-
comparison is made between different hydrodynamic models. Thgjons determined by simulation, with varying interaction well

squeeze-only model incorporates hydrodynamic interactions that agepths(open symbolg with well controlled experimental results by
between particles whose relative velocities are directed along thejg ,scall. McGowan. and Morton- Jonfa8] with an estimated well

line of centers. The squeeze and rotation model incorporates th@epth of —22gT (solid line). There is agreement only at the very
squeeze terms as well as those lubrication interactions arising fror&eepest simulation well deptiQE 7500).

the transverse motion of neighboring particles. Finally, the squeeze,
rotation, and Brownian motion model includes the hydrodynamicproximation results in slightly higher computed viscosities
modes as above with the inclusion of Brownian forces. The inset10-20 % increase over that of the squeeze-only simula-
shows that the scaling betweep and W is approximately un-  tions). These additional dissipative terms will lend additional
changed with hydrodynamic model. variations in the local structures within the bulk and it is not
unreasonable to expect slight variations in the viscous re-
tational box contains 200 particles in all cases. Here wesponse of the system. The direct Brownian contribution to
study three volume fractionsp=0.45, 0.50, and 0.53. As the viscosity is positive. However, at low shear rates in the
expected, the viscosity increases with increasing colloid conregime where Brownian forces are non-negligible, the over-
centration and each curve approaches a different value fall effect of the Brownian term is to lower the computed
7., although this fact is not resolved on the scale of Fig. 5viscosities through the indirect effect it has on the viscosity
For each volume fraction, each curve can be scaled witltontributions of the other forces, particularly the dominant
respect to its high-shear-rate viscosity. The inset shows theookean term. The effect is to lower their computed values
scaled data, for all three volume fractions, on a log-log plotcompared with those simulations that neglect Brownian

We would anticipate that the full rheology curve might forces. Physically, we reason that this is due to the effect
obey a Hershel-Buckely constitutive relation, but we do notBrownian forces have on the kinetics of the particle struc-
shear at low enough rates to see the first Newtonian plateatures in the system. As mentioned above, aggregated systems
In the regime studied, the data obeys a SiEKf constitu- under shear gain structural rigidity due to the extended par-
tive relation. When the viscosity is reduced according to thidicle networks that form as a consequence of the attractive
relation, the whole data set, for this range in volume fractionforces between the particles. However, the effect of includ-
collapses onto one cun{@set of Fig. 5. The shear-thinning ing Brownian forces is to disrupt these particle structures and
exponent is calculated to be=0.75+0.02. This is indica- enhance the rupture of the networks under shear, thus low-
tive of a power-law fluid, with relative viscosity related to ering the viscosity.
shear rate likep,~%~ %7 Thus we conclude that our sys-  We see that from the scaled log-log plot, these variations
tems behave as power-law, shear-thinning fluids witlver-  in the model again collapse onto one curve. A fit of this line
sal behavior over this range of volume fraction. The changegives a value fora=0.78+0.04. In general, we do expect
in slope noticeable foth=0.53 (far right of insej coincides the shear-thinning exponent to be sensitive to the model de-
with the ordering of particles into the string phase at thesdails [17], but within the scope of these studies the exponent
shear rates. See Sec. Ill B and Fig. 9. appears to vary only within the margin of error.

We now test whether this behavior is independeithin We now pursue a direct quantitative comparison with the
the scope of the modebf the details of the hydrodynamic well controlled experimental work carried out by Buscall,
interactions included. This includes studies of aggregate#lcGowan, and Morton-Jond28]. The experimental curve
systems where the hydrodynamics is approximated by onlis for a system where the aggregating well depth was esti-
the squeeze terms, squeeze terms and rotational hydrodgrated to be- 18kgT [28], and Fig. 7 shows simulation-data
namical modes, and finally squeeze and rotation hydrodyfits to this curve. We simulate systems witleakaggregat-
namicsand Brownian forces. Figure 6 presents the rheologying interaction potentials ,in=—9%gT (Q=1050.0), U nin
curves for these systems. =—18kgT (Q=3000.0), and also strong aggregating inter-

Again we see the expected occurrence of shear thinningction potentialsy ,;,=—68kgT (Q=7500.0). We see that
and a leveling off at high shear rates as before. In comparinwith our simple model, the simulation only fits the experi-
the effects of the details of the hydrodynamic model, we findmental data in the limit of very strong aggregating forces
that the inclusion of the rotation terms in the near-field ap{Q=7500.0) which for the depletion potential is unphysi-
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10° 107 1t 107 107 107 10" particles Q=1050.0).(a) For W<Wging (W=1.0Q) the appear-
W

ance is of a homogeneous distribution of particles with no obvious
ordering(particles drawn at half size for clarjty(b) Above a cer-

FIG. 8. Variation of the two dimensionless normal stress differ-,_. . . .
; - tain shear rat&\V.,ing (W=250.0Q), the particles flow in strin
encesN; andN, with shear rate, for 200 particles ét=0.50. They formation(particlggn?jr(awn at fuIIQs?z)e P 9

both remain close to zero until high shear rates are reached. As the

string phase is approached, badh andN, dip, but as the strings  particles in a computational box. The structure looks homo-
begin to melt and the particle gaps collapsle,becomes positive. geneous, in Fig. @), until high shear rates are approached
o L when the string phase is reached. These qualitative features
cally large—we will discuss this failing below. We note that g ,ggest that the ordering of particles is not responsible for
there is, however, agreement between the simulation and ey shear-thinning effect. Figurédd is taken halfway down
periment in the shear-thinning exponeat,,=0.87+0.01  he shear-thinning curve, whereas @brresponds to a point
compared Withwgimyiatior= 0.86% 0.03. At this high potential, o the right side of the rheology curve from Fig. 4. In the

the shear-thinning exponent is altered. o _ string phase, the particles flow in “tubes” aligned parallel to
A normal stress-differences plot is shown in Fig. 8. Thisthe imposed flow direction as in Fig(t. The overall ar-

data is taken fro_m a system at 50% volume frac.tion Wh?r‘?’angement of these tubes is hexagonal.
the hydrodynaml_cs is modeled on the squeeze interactions At |ower volume fractions, below 45%, there is a drastic
and an aggregating well depth 6f9kgT. The two normal  change in the behavior of the model suspensions, effectively
stress differencesy; andN,, are defined afl] a loss of constitutive rheology. For the lower volume frac-
(189 tions studied here, 30-40 %, the systems tend to exhibit
shear banding. An example of a banded configuration of 700
(18b) particles at shear ra/=5/Q is shown in Fig. 1(8); as the
shear rate is increased, the banded configuration is torn apart
where the shear flow imposed is in tkedirection with gra- Py the flow as shown in Fig. 1b) at W=100RQ. Banding
dient along they direction. Initially the two dimensionless Phenomena such as this are extremely interesting facets of
normal stress differences stay close to zero. It is questionabf®MPplex fluids under flow. Others have found this kind of
whether this is because there is no definable structure ovéehavior in simulations of pressure-driven flows of hard-
this range of shear rate or because there exist isotropic struéPhere suspension88]. Figure 11 shows the stress—shear-
tures in the flow. At intermediate shear raws=1/Q, both rate curve_for the shear-banding system th_at follows qualita-
N, andN, become slightly negative. At higher shear rateslively previously calculated curve89]. The inset gives the
the normal stress differences become markedly more negi¢Pical velocity profile across the computational box for a
tive, coincident with the initial formation of the string ar- Panded system. Here the velocity profile for Fig.(a0is
rangement at this shear raté, then recovers and becomes SNOWn.
positive. This last effect is due to the gradual melting of the
string phase at the highest shear rates. The interparticle gaps
begin to collapse and logarithmic shear thickening is seen.
The generic shape of this curve is indicative of the change in
the microstructure as the particles suffer increasing shear .
stresses.

Ni=0xx— 0yy,

N,= Tyy™ 02z,

;T;»%V “@Uca

Gradient
Gradient

B. Microstructure

1. Strings and bands Vorticity

We now proceed to qualitatively investigate the micro-  F|G. 10. Snapshots looking down the flow direction where the
structure under several flow conditions and shear rates. lparticles are drawn at half size at 40% fay a banded configura-
line with the preceding subsection, Fig. 9 shows snapshots @bn of 700 particles at intermediate shear raté¢=(5.0Q); (b)
particle configurations taken at 50% volume fraction, the200 particles at high shear rates, where the banding has been broken
same systems studied in Fig. 4. These systems contain 2@@ by the flow {V=100.0Q).
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0 o | ‘ : to the viscosity along theompressionatlirection, but nega-
} I ’Tq , tively along the extensional direction. However, their angular
S5 ! integral gives an overall dominant positive contribution to
=10 > oos J the viscosity, as shown in Fig.(|4). In contrast, while the
&£ A et magnitude of the attractive contributions at each angle are
H Distance Actoss Box s individually of the same order of magnitude as the repulsive
&0 — ,,/ 4 component and their signs are opposite, their angular integral
.es is close to unity. The hydrodynamic squeeze force contrib-
utes both positively and negatively in both the extensional
no“lo,fﬂég R T and compressior_lal _directions. This is possib_le becau_s_e the
w squeeze interaction is dependent on the relative velocities of

the particle pair. Overall, however, the squeeze force contrib-
FIG. 11. Behavior of the stress with shear rate at 40% volumeytes positively to the total viscosity.

fraction where shear banding takes place over intermediate shear
rates. The stress is nonmonotonic. The velocity profile, in units
where the shear rate and particle diameter are both set to unity,
across the boxbottom to top is left to right on the axigor Fig.

10@). We must emphasize that due to the reduced hydrody-
namic interactions, the model may fail to represent well the
physics of the real system. However, it is clear that the con-
Unlike many models, our particles are given a strong reservative colloid interactions dominate the stress, so the in-
pulsive force on their surfaces which we found to make aaccurate estimates of the hydrodynamic contributions may
dominant contribution to the shear stress. On the face of itnot be significant in themselves. The neglect of fluid pump-
the attractive forces make a small contribution; yet, as théng in the general pore space around the particles is likely to
stresses are greatly enhanced over the case without the dge significant for aggregate deformations, but we assume this
gregating forces, this cannot in detail be the case. In thigs not important at the concentrations studied. Of course, the
section we further analyze the different contributions to thetrue hydrodynamics may give qualitatively different particle
stress to understand this dilemma. In Fig. 12, we plot thelows.
distribution of shear stress tensor per pair of interacting par- Nevertheless, we do gain some insight from the model.
ticles analyzed with respect to the orientation of the particlaNe have seen how the inclusion of an aggregating potential
pair and the contributing interaction. For each interactinggreatly enhances the viscosity of a suspension compared
pair over many configurations, we projected the particlewith that of a nonaggregating system. It has been shown that
center—to—particle-center vector onto the shear-gradient flofor these concentrated systems there exists a regime of ap-
plane and resolved data according to the angle formed bgroximate universal power-law shear-thinning behavior over
tween the projected vector and the shear-gradient axis, th@e range of volume fraction 0.45¢<0.53 for weak aggre-
angle of 0° being parallel to the shear-gradient &sée Fig. gation potentials with exponents close to those of experi-
2). The contributions to the stress tensor, as defined in Eqnent. We note that these exponents vary only very slightly
(16), are shown, namely, the Hookean repulsive term, theacross different varieties of the model, in particular across
depletion term, and thequeezéydrodynamics term. What what must be a significant qualitative change in the particle
we find, in Fig. 12, is that the directions along which the motions: turning the shear modes and particle rotation on and
Hookean and depletion contributions are largest are theff. This is all, at leastsuggestive that the missing hydrody-
sheareompressionaind the sheaextensionadirections, re-  namic features will not alter these exponenfthe exponents
spectively. The Hookean term contributes higiplysitively — do, however, change for more strongly aggregating poten-
tials.
20 \ \ ‘ ‘ The model failed to quantitatively predict the experiment
!‘ ] unless unrealistically high potentials are introduced. This
ol } ] W I may be due to the missing hydrodynamic terms. However,
W i \‘ ’ \ I | ‘ t‘ this would require an order-of-magnitude-larger hydrody-
q] L i' ' ‘ b I‘l H J | that this is reasonable: if we estimate the full hydrodynamic
} E ‘ Squeeze L contributions from that for Brownian hard spheres at the vol-
gggsﬁf:n ume fractions and flow conditions of interest, this only in-
creases the small hydrodynamic contribution in the results
-20 above by some 20-30 %. There is another important feature
90 _69 S0 0 . 0 @ % neglected in the model: the experimental particles have a
(Compressional) 6 w.r.t. Gradient Axis (Extensional) R .
polymer coat on their surfaces, and the aggregating forces
FIG. 12. Decomposition of the viscosity component of the stresgletermine that the particles will have these coats in contact.
tensor with respect téw.r.t) particle bond angle, with 0° being Contacting coats will greatly enhance the local viscous inter-
parallel to the shear-gradient axis. The contributions to the stresdctions between spher¢d0]. We have made preliminary

are the squeeze, Hookean, and depletion terms. The compressioalculations which show that the viscosity values of the ex-
and the extensional directions are seen to be dominant. periments can be computed with realistic potentials in the

IV. SUMMARY AND DISCUSSION

2. Angular decomposition of the stress tensor

namic contribution than that in the current model—we doubt

Stressx(d3/kBT)
(=]




7076 L. E. SILBERT, J. R. MELROSE, AND R. C. BALL 56

range of the polymer coats and we will report on this in the
near futurgd41]. A second reason may be that the real system
feels the stronger van der Waals attraction, but evidence of a
degree of irreversible aggregation on shear was not reportec ¢
in the experiments of Ref28]. 3

The model showed shear banding in systems at the lower
volume fractions studied)=<0.40. In such systems the stress
is shown to be nonmonotonic with increasing shear rate. At D
rest our systems are phase separating; this is therefore ¢ Vorticity Vorticity
shear-induced orientation of thermodynamically driven sepa- _ _ ) o
ration rather than a shear-induced banding of a stable ther- FIG. 13. Snapshots of 200 particles with Brownian motion in-
modynamic system. This may be a false prediction for a reaf!uded at(@ 40% compared witt(b) banding at 30%both atw
colloid system because it is clear that it will be sensitive to— Q).

the fuIIhhygrgdygamics_, we have.exclttj)ded. Since Wel appProXipiication of the shear field—through true Lees-Edwards
mate the hydrodynamic interactions between particle pairs 8, ,nqary conditions as above, and that it is sensitive to arti-

a pair drag, the gross separations that occur with shear ban Gial coupling to a background affine flow field as in the
ing call into question the validity of the model, and indeedfree-draining model.

we do find that the occurrence of shr—gar banding.is dependent Understanding the nature of concentrated aggregating sys-
;n the det]:mls of the4r8;del. Im pa:(tlcullar, thghlnglu5|on 9ftems under shear has been tackled here. We provide impetus
rownian forces at 40% volume firaction with Brownian ¢, f,rther work, including a theoretical challenge to eluci-

forces. “switched on,” the systemdo notshear bandFig. a1 the microstructural behavior of such colloidal systems
13(@)]; however, Figure 1®) shows a system at 30%ith 16,17, the role of surfacef41], and shear-banding effects.

Brownian forces switched on, and here we do see evidencg, s far closer to physical systems than previous works
of shear banding. Evidently, as we decrease the volume fragy 14 >3 have been simulated, to a certain degree, showing
tion there is an increased sensitivity to shear banding. Fro ehavior close to universal. More complete hydrodynamics

th theore.tical point of view, a mpdel showing shear' ban.dingind more realistic surface models are needed before compre-
is interestingper se Shear banding has been studied, in 3hensive predictions can be made.

theoretical context, for polymers and wormlike micelles at
high shear rate$39]. Symmetry suggests that bands may
form in steady states normal to either the gradient direction
or the vorticity direction. The orientation of shear banding in  We thank the DTI/Colloid Technology Project cofunded
the model herénormal to the gradient directipns not that by the DTI, Unilever, Schlumberger, ICI, and Zeneca, the
found for free-draining modelg9] (normal to the vorticity Colloid Hydrodynamics Grand Challenge Project, and the
axig at intermediate shear rates with the same potential BBSRC food directorate, together with Dalgety plc. for
This suggests that the orientation requires global apfunding.

Gradient
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