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Colloidal microdynamics: Pair-drag simulations of model-concentrated aggregated systems
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We report results of simulations of a model for concentrated aggregated colloidal dispersions under shear
flows. In an effort to study trends in rheology for varying colloidal interactions, we study a reduced hydrody-
namic, frame-invariant, pair-drag model in which a long-range, many-body mobility matrix is generated just
from resistance pair-drag terms that include lubrication. The model also includes depletion interactions, repul-
sive surface forces, and Brownian forces. We consider the steady-state rheology of the model which we varied
in volume fraction between 30% and 53%. We are able to fit our data to experimental results. The rheology of
the model is that of a power-law shear-thinning fluid with relative viscosity scaling with shear rate ash r

;ġ2a and an exponent close to universal over a range of particle volume fractions 0.45–0.53. We also
obtained a shear-thinning exponent that appears to be just weakly sensitive to the hydrodynamic model. The
exponenta varies from 0.7560.02 for weakly aggregating systems to 0.8660.03 in the case of strong
aggregating systems and the experimental data. As we lower the volume fraction we find a model-dependent
transition to shear banding, where the rheology is effectively lost. We also find evidence of transitions between
different shear-thinning regimes at the higher volume fractions when the particles are arranged in the familiar
strings phases.@S1063-651X~97!13212-3#

PACS number~s!: 47.50.1d, 83.50.2v
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I. INTRODUCTION

Aggregated colloidal suspensions show a variety of n
Newtonian rheological properties, such as yield stress, s
thinning, shear thickening, thixotropy, and rheopexy@1#.
Even at moderate concentrations, aggregating suspen
become ‘‘gel-forming’’ networks, considered to consist
continuous or percolating networks of particle aggrega
prior to settling~sedimentation! @2#, and are widely regarded
as ‘‘colloidal gels’’ akin to polymeric systems@3#. In these
microstructural fluids, the suspended particles inter
through interparticle ~conservative!, hydrodynamic, and
Brownian forces. Under equilibrium conditions, it is th
competition between the interparticle and Brownian forc
that determines the microstructures. However, when a sh
ing motion is introduced into the system, hydrodynam
forces must also be considered along with the interpart
and Brownian interactions. This highly nonequilibrium sta
raises many interesting questions about the microstruct
organization under the influence of shear flows and the s
sequent rheology of such systems. However, theore
progress is hampered by the lack of insight into structu
mechanisms.

Computer modeling is seen by many to be a route f
ward, but despite considerable effort, accurate algorithms
modeling the flow of particles concentrated in a hydrod
namic medium@4–7# are not yet efficient enough to allow
studies far from equilibrium on relatively large system
across a parameter space of colloid interactions. Some
thors @8,9# have simply dropped hydrodynamic interactio

*Electronic address: 1s10009@phy.cam.ac.uk
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from their models in an attempt to gain some insight,
though these algorithms are often physically naive repres
tations of true systems. The simulations presented here o
an improvement on the nonhydrodynamic models by inc
porating a computationally efficient, but approximate, hyd
dynamic model that respects some, but not all, of the cor
physics of these interactions under shear flow. It includes
leading-order terms in the mobility matrix in the limit o
concentrated systems and should therefore be seen
strong-coupling approximation; full details are given els
where@10#. We emphasize that our aims at this stage are
study trends in colloid rheology and to motivate new theo

At lower concentrations than those of interest here, th
are many theoretical models of the shear behavior of ag
gates@11–15#. All these theories make untested assumptio
about the microstructural behavior of the dispersion. Ho
ever, a common ingredient in most of these theories is
idea that the stress in an aggregated system is carried thr
an open network that consists of the whole aggregate.
subsequent rheological behavior comes from the grad
breakdown in length scales over which the stress is carr
for example, breakup of fractal networks; see Ref.@14#.
These assumptions can be effectively assessed by com
modeling. Our recent studies on the microstructural evo
tion of stress-bearing networks in concentrated, aggrega
colloids @16# suggest that within the bulk there are domina
stress pathways consisting of rodlike particle structures.
resulting rheological behavior can then be described in te
of the rupture and reformation of these clusters@17#.

Most of the simulations to date have involved mode
without hydrodynamic interactions employing the fre
draining approximation@9,13,18–20#. At this level, Melrose
and Heyes@9# performed simulations on flowing aggregat
7067 © 1997 The American Physical Society
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where they predicted gross structural changes under s
involving layering. In the models without hydrodynamic in
teractions, close particles do not feel divergent viscous in
actions under relative motion. Shear is applied by coupl
the particles to a background affinely shearing fluid wh
they do not disturb. These one-particle drag terms determ
that the model is not Galilean invariant, and so-called me
field hydrodynamics@8# as formulated does nothing to co
rect this failing. Limited studies have been made on
stresses of static aggregates by shear flow that do inc
hydrodynamic interactions@21–23# via low terms in moment
expansions.

Hydrodynamic interactions must be important in real s
tems. Several methods have been proposed for accur
computing hydrodynamic interactions@4–7# and research
continues. Moment expansions are@5# O(N3) in the number
of particlesN, to compute the motion at one time step,
though anO(N2) method without Brownian forces has bee
proposed@4#. None of these methods has yet been shown
be computationally feasible for large systems with collo
interactions. The lattice Boltzmann@7# method has not bee
implemented with the moving boundary conditions requir
to impose shear flow and would need fine meshes to c
the divergent interactions between particles. Less accu
methods have been studied@24,25#, the most extensively ap
plied being that of Bossis and Brady@24#. However, the
method isO(N3), and results for dynamic simulations o
only small systems in three dimensions~3D! have recently
been published. The method of Ref.@25# fails to handle close
particle surfaces above 40% volume fraction and has not
been developed with colloidal interactions.

We argue that the lowest-order approximation that reta
much of the physics of hydrodynamic interactions is in t
strong-coupling limit of concentrated systems—aframe-
invariant pair-drag modelwith divergent lubrication interac
tions.

The equations of motion are given by a balance of forc
torques calculated as a sum over all nearest-neighbor pai
hydrodynamic, conservative~colloid! forces, and random
Brownian forces:

2R–V1FC1FB50, ~1!

whereR, F, and V denote a 6N36N drag matrix and 6N
force and velocity vectors, respectively. We deal first w
the need for frame invariance. The hydrodynamic forc
torques on the particles can be viewed in matrix form asU
5M–FH or, equivalently,FH5R–U, where, in principle,U
is a vector of fluid and particle velocities. In the absence
an explicit fluid velocity field in the simulation, we argu
that it is physically incorrect to break frame~Galilean! in-
variance in the particle velocities; we therefore build the
teraction model out of Galilean-invariant dissipative intera
tions, that is, the matrixR has the symmetry

R–~V1Uconst!5R–V, ~2!

whereUconst is a constant velocity field or a rigid rotation
The frame-invariant formulation implicitly assumes that
the problem of interest, the average fluid flow field is t
same as the average particle velocity field, so such a for
lation therefore cannot model many problems such as s
mentation. For a shear fieldG we rewrite~1! in the form
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2R–„V2V0…1FC1FB2~R–V0!50, ~3!

whereV0 are a set of velocities defined at the particle cent
by G with Lees-Edwards@26# ~i.e., shear periodic! boundary
conditions. By imposing periodic boundary conditions on t
velocity differenceV2V0, we thus impose overall shear glo
bally on our sample without locally constraining the flow.

We now discuss the long-range nature of hydrodynam
in a concentrated system and argue that a long-range m
ity matrix can be formed from pair, near-field resistan
terms. It is not generally recognized that one must carefu
distinguish between the long-range nature ofM and the
much shorter range ofR. ConsiderM: elements of this can
be interpreted in terms of the following thought experime
Apply a unit force to one particle and measure the cor
sponding particle velocities under conditions in which th
are force-free. Approximating the suspension as a fluid
viscosityhT leads us to estimate the translational elements
M as

M i j '1/~hTr i j ! except M i i '1/~hTd!, ~4!

wherer i j is the center-to-center separation of particlesi and
j , andd is a particle diameter. The key features ofM are that
it falls off as a slow power of distance and all elements
scaled by the same amplitudehT .

The thought experiment for the elements ofR is to give
one particle unit velocity while holding all the others fixe
then measuring the forces on the particles. In concentra
systems, the near-neighbor~NN! and diagonal terms are
dominated by lubrication effects and diverge at small int
particle gaps as

Ri j '
2h0d2

~r i j 2d!
for r i j 'd and Rii >2( RNN , ~5!

whereas the longer-range elements ofR can be estimated by
analogy with a porous medium and give

Ri j '
2h0d4

r i j
3 , r i j @d ~6!

~this can be seen from the Green’s-function solution of
Brinkman equation and by theory including many-body
teractions!. The long-range part ofR falls off as a much
steeper power than forM and, moreover, the divergence wit
close interparticle gaps enters into the diagonal and nea
neighbor terms but not the long-range terms.

For concentrated systems we find it compelling to exp
the dominance in the resistance matrix of the near
neighbor and diagonal terms~for which the dominant
squeeze modes diverge as the interparticle gap and at
level are pairwise additive!, over the longer-range terms
which have nondiverging amplitude and~compared toM !
relatively rapid falloff with distance. InvertingR to obtain
M , it is evident in concentrated systems, as the gaps bec
small, that the leading behavior of all the mobility elemen
comes exclusively from the nearest neighbors and diago
terms ofR. In our earlier discussion ofM @cf. Eq. ~4!#, this
leading behavior, proportional to the interparticle gaps,
hidden in the factorshT

21.
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56 7069COLLOIDAL MICRODYNAMICS: PAIR-DRAG . . .
The algorithm below identifies nearest neighbors a
forms R pairwise out of terms including the divergent pa
found in the lubrication approximation. Inversion of th
sparse matrixR is performed by iterative techniques. As h
often been stated, hydrodynamic simulations need to p
erly include the many-body and long-range nature ofM , and
the approximation at high concentrations includes
leading-order terms to this. However, it is an inaccurate
proximation to the full hydrodynamic matrices, since it i
nores localN-body effects inR itself in which the flows
within the narrow gaps are coupled to the flows in the lo
pore space around the particle. Indeed, relative tangentia~or
shearing! motion has a coefficient diverging only a
ln@d/(rij2d)# and although we include this in the comput
tions, it is, in practice, not much more significant than t
more distant elements ofR, which we neglect.

Other workers are reporting pair-drag models@27# that
include additional terms that break Galilean invariance.
be clear, we will refer to the model used here as aframe-
invariant, pair-dragmodel.

We compare our simulation studies with recent expe
mental results on relatively well controlled weakly aggr
gated systems@28,29#. In particular, Buscall, McGowan, an
Morton-Jones@28# carried out work on depletion-flocculate
systems where the colloid particles had a thermodyna
volume fraction of 47%, through the combination of the h
drodynamic volume fraction of 40% plus the presence o
polymer-coated surface. Aggregation is induced through
addition of a nonadsorbing polymer into solution. The resu
ing osmotic imbalance arising from the exclusion of t
polymer particles from a region around close-approach
colloid particles then leads to an effective attractive-well p
tential interaction, which depends on the size ratio of the t
species and the concentration of the polymer particles.
resulting experimental attractive-well depths were estima
to lie between22.5kBT and225kBT. However, the colloid
particles are stabilized from coagulation in the deep prim
minimum at very close contact~van der Waals minimum
Umin,2100kBT!, through the inclusion of the surface poly
mer coat.

There are many ways to induce particle aggregation@30#,
but in an attempt to model depletion interactions, in o
simulations we approximate the aggregating potential as
proposed by Asakura and Oosawa@31#. In the simulations,
these weak aggregating forces provide an attractive inte
tion of the order of 210kBT. In an attempt to mode
polymer-coated spheres, we include a steep repulsive sp
force at the surface of our particles. This spring force eff
tively mimics the osmotic part of the polymer coat. The
latter forces are neglected in most theories, but actually
out to play a significant role in the simulations. However,
other aspects of this layer and interactions with the polym
species in solution are ignored. In particular, the viscous
teractions due to the drainage of solvent through the poly
layer are neglected here.

There are several recent publications containing detail
the simulation method, both carried out at the Rouse le
@8,32# and those which include detailed hydrodynamic int
actions@10,33#. Full and explicit details of our algorithm ar
presented elsewhere@10#, so only a brief overview of the
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technique of the present simulations is presented in the
section. Section III focuses on the results obtained from
simulation studies.

II. SIMULATION METHOD

We consider time scales long with respect to the visc
momentum relaxation time of the suspension so that we t
the particles at the Langevin-Smoluchowski level and
fluid by the creeping-flow equations. Stick boundary con
tions are imposed on the fluid at the particle surfaces. FoN
such particles, immersed in a Newtonian fluid with viscos
m and densityr, the equations of motion are described by t
coupled N-body Langevin equation expressing force b
ance:

05FH1FP1FB. ~7!

The 6N force/torque vectors represent~i! the hydrodynamic
forcesFH exerted on the particles due to their motion relati
to the fluid,~ii ! the interparticle forcesFP, and~iii ! the ran-
dom Brownian forcesFB.

A. Interparticle forces

The interparticle interactions include the contributio
from the depletion interaction whose attractive forcef A is
approximated by@31#

f A~r i j !52
QkBT

d
@L22~r i j /d!2#H~Ld2r i j !, ~8!

whereL511a/d, with d being the diameter of the colloid
particle,a twice the radius of gyration of the added polym
species at a volume fractionfp , r i j the separation betwee
the i th and j th particles, andH(x) a unit step function.

The interaction strengthQ depends on the volume frac
tion of polymerfp and the size ratio of this added polym
to the colloid particlea/d:

Q5
3fp

2~a/d!3 . ~9!

For a typical ratio ofa/d, and a sensible value forfp , Q
ranges between 1000 and 10 000.

We use linear springs as the crudest model of conse
tive, repulsive forces between the adsorbed polymer co
The repulsive forcef R between spheresi and j separated by
r i j is

f R~r i j !52ni j

kBT

d
$F02~F0 /dc!~r i j 2d!%

for ~r i j 2d!,dc, ~10!

50 for ~r i j 2d!.dc.

The Hookean spring coat thicknessdc/2 sets how much the
thermodynamicsize of the particle exceeds thehydrody-
namic size of the particle. The termF0 sets the maximal
force the spring can supply and is set to 104 for all simula-
tions.
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Figure 1 shows the interaction potential arising from t
combination of the depletion interaction together with t
repulsive surface forces. In the simulations reported bel
all distances are measured in terms of the particle diam
d, which, for convenience, is set to unity. The coat thickn
parameterdc50.01d, fp50.70, and the size ratioa/d
50.1; consequently, forQ;1000, the particles at rest ar
aggregated in well depths of order210kBT. Two systems at
higherfp are also presented~Fig. 7!.

B. Hydrodynamic interactions and equations of motion

The hydrodynamic model, as mentioned earlier introdu
a resistance tensorR, a sparse matrix, acting between near
neighbors such that the hydrodynamic force is given by@see
Eq. ~2!#

FH52R–V. ~11!

TheV are the 6N velocities and angular velocities, andR is
actually a 6N36N particle-configuration-dependent matrix

For the nearest-neighbor hydrodynamics drag we use
leading singular terms in the lubrication approximation, t
most divergent being the squeeze mode. The other mo
arising from the shear and transverse motion of neighb
are logarithmically divergent with respect to the gap. W
also include terms due to higher orders in the gap expan
which are also logarithmically divergent@6,34#. To leading
order in the intersurface gaps, thesqueeze-modeforce f i

H on
particle i is given by

f i
H52(

j
~3pmd2/8hi j !$~vi2vj !•ni j %ni j , ~12!

wherem is the viscosity of the solvent,d being the particle
diameter, the sum is over nearest-neighbor particlesj , hi j is
the gap between the surfaces,ni j is the unit vector along the
line of centersi to j , andvi , vj are the particle velocities.

For many of the results below, we will study models wi
just the squeeze interactions. This approximation is justi
as we find that the scaling relation between stress and s
rate for the rheology with just squeeze lubrication inter
tions is relatively insensitive to the hydrodynamic mod
used in the simulations—whether we include higher-or

FIG. 1. The equilibrium interaction potential between partic
pairs experiencing the attractive depletion forces with repuls
forces approximated by a Hookean spring surface of thickn
0.005 particle diameters. Polymer concentration,fp50.7, polymer/
colloid size ratioa/d50.1 (Q51050.0).
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terms or other hydrodynamical modes, the scaling expon
remains approximately constant.

Random forces and torquesFB, when included, obey the
fluctuation-dissipation theorem:^FBFB&52kBTR. Including
Brownian forces in the equations of motion is computatio
ally expensive~e.g., fivefold for the typical data here!. Solv-
ing for the particle motion, it is necessary to numerica
solve Eq.~7! for the particle velocitiesV. Thus Eq.~7! be-
comes@cf. Eq. ~1!#

2R–V1FP1FB50, ~13!

which generates long-range correlations in the particle m
tion through the inversion ofR, which has the computationa
merit of being sparse and is, in principle, anO(N2) opera-
tion, although we find that the practical scaling to achie
fixed accuracy is more likeN1.5 @10#. The flow is driven by
Lees-Edwards boundary conditions@26# on systems in spa
tially periodic boundaries. The computational geometry
shown in Fig. 2, where the flow (x), gradient (y), and vor-
ticity (z) directions~axes! are also defined.

In simulations of sheared aggregates when Brown
forces are neglected, the physics is solely determined by
competition between the colloid interactions and the sh
forces. We introduce a dimensionless shear rateW, which is
the single parameter determining the physics at a partic
volume fraction. It is defined as the ratio of a shear force
the solvent in the absence of particles to the maximum
tractive force of a particle-particle bondf max(r) at a separa-
tion r 5d:

W5
Fshear

f max~d!
5

md2ġ

QkBT/d
. ~14!

Here the dimensionless shear rateW is defined with respec
to the solvent viscositym, d is the particle diameter, andQ
has already been defined in Eq.~9!. The choice of the defi-
nition of W is convenient in the following data plots. I

e
ss

FIG. 2. The computational geometry of a single computatio
box for the simple shear-flow simulation, with the flow (x), gradi-
ent (y), and vorticity (z) directions~axes! defined as shown. The
imposed shear rate is performed by Lees-Edwards boundary co
tions across the top surface of the periodic boundaries.
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56 7071COLLOIDAL MICRODYNAMICS: PAIR-DRAG . . .
Brownian forces are included,W is related to the Pecle
number, Pe5md3ġ/kBT through the relation

W5Pe/Q, ~15!

and all of the following rheology plots will be given in term
of the relative viscosityh r of the bulk to that of the solven
and the dimensionless shear rateW. Since our studies are
always at largeQ (Q.1000), we are always in the phas
separating region. InW, we only vary the ratio of the shea
forces to the colloidal forces. We do not vary the ratio of t
Brownian forces to the colloidal forces, hence as we low
W, although Brownian forces will certainly become increa
ingly important relative to shear, the system remains in
phase-separating region in which colloid forces domin
over Brownian forces; see Fig. 6.

It must be noted that Eq.~14! involves only a crude esti
mate of the shear forces on a particle in the bulk suspens
The parameterW85h rW will provide a more accurate est
mation of the ratio of the bulk suspension forces to the
gregating forces, buth r has to be computed from the simu
lation.

C. Computation of stress

The relative viscosityh r , defined as the ratio of the sus
pension viscosityh to that of the solvent viscositym, can be
calculated from the bulk stress of the suspension, define
a sum over all nearest-neighbor interacting pairs:

s5
1

V (
i j

f i j r i j , ~16!

where r i j is the edge vector andV is the volume of the
computational box, andf i j is the sum of the hydrodynami
@Eq. ~12!, for example# and intercolloid particle pair force
(8)1(10). The Brownian contribution to the stress tenso
properly computed elsewhere@10,35#. Note that the shear
gradient-flow element ofs is the relative viscosity.

From the above definition of the relative viscosity a
from Eq. ~16! we obtain, for the total relative viscosity,

h r511h r
H1h r

P1h r
B ~17!

where the hydrodynamic, interparticle~sum of repulsive and
attractive terms!, and Brownian contributions to the relativ
viscosity are denoted ash r

H , h r
P (5h r

PR1h r
PA), andh r

B re-
spectively, and the unity contribution is that of the solven

D. Simulation strategy

The results presented here are for monodisperse sph
whose initial random configurations were generated
Monte Carlo procedures. We formed configurations at r
without aggregating forces, and then turned on the shear
the aggregating forces together. As we will see below, Fig
our simulations lie in the second half of the shear thinn
region where much of any rest structure is lost. This pro
dure in the simulation is equivalent to those experiments
Hunter and Frayne@36# in which all structure was destroye
by high-flow treatments prior to low-shear studies. A numb
of simulations were carried out for each volume fracti
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studied encompassing a wide range of~dimensionless! shear
rates (1022,WQ,103). For simulations carried out with
out Brownian forces, the time step was 0.002 in units wh
the shear rate and the particle diameter are both set equ
unity and we used a first-order time-step algorithm for mo
ing particles. The typical number of time steps for runs we
100 000–200 000, with times to reach the steady s
20 000–50 000 steps. In the cases of simulations that
cluded Brownian motion, we had to switch to a predicto
corrector algorithm with a variable time step ranging fro
1026 to 1023, and run for up to 106 time steps.

III. RESULTS

There are two regimes of volume fraction to be cons
ered. For volume fractions of 45% and above our syste
exhibit shear-thinning behavior, which we are able to stu
and characterize in terms of shear stress and relative vis
ity as a function of shear rate. We are able to examine
effects of volume fraction~Fig. 5!, hydrodynamic force
model ~Fig. 6!, and system size~Fig. 4! on the rheology of
these systems. Over a large range of shear rates these
tems obey that of a power-law, shear-thinning fluid~Figs. 5
and 6!. At high shear rates we find evidence of a transiti
from the thinning regime~Figs. 5 and 9!. We also investigate
the dominant contributions to the stress tensor. We angul
decompose the stress contributions with respect to par
‘‘bond’’ angle ~Fig. 12!.

By contrast, simulations at 40% volume fraction under
shear banding and we effectively suffer a loss of rheolo
~Fig. 10!. We present snapshots taken of particle configu
tions that show the structural organization that occurs w
shear banding takes place~Fig. 9!.

A. Rheology

We compare the simulation rheology data at 45% volu
fraction, in Fig. 3, between Brownian spheres with aggreg
ing forces to that of Brownian spheres without aggregat

FIG. 3. Rheology at 45% volume fraction: a direct comparis
between an aggregating system of Brownian spheres, which
cludes depletion interactions, with a system of nonaggregat
Brownian spheres, which has no aggregating forces. The aggre
ing system experiences an enhanced viscous response over the
aggregating system.
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7072 56L. E. SILBERT, J. R. MELROSE, AND R. C. BALL
forces. It is clear that the aggregating system experienc
large viscous enhancement over the nonaggregating sys
In fact, their respective viscosities differ by an order of ma
nitude over the shear-thinning region. The presence of
aggregating forces results in extended structures within
bulk and an enhanced resistance to flow. Thus, the resu
behavior is an increase in viscosity over that of a non-pha
separating system.

Note that the system with just Brownian forces first sh
thin and then thicken at higher shear rates. Due to the
coats, thickening behavior is not seen in our model aggre
ing system until we reach much larger shear rates, and
only to a very minor degree.

We show several rheology plots~Figs. 4–6! pertaining to
several parameter changes in the simulations: volume f
tion, hydrodynamic interactive models, and system s
~number of particles and computational box size!. In Fig. 4
the rheology plots at particle volume fraction 50% a
shown. Figure 4~a! compares viscosity values for sever
system sizes,N550, 200, 700 particles per unit cell, where
Fig. 4~b! displays the contributions to the total viscosity~for
the system containing 200 particles!.

The phase-separating systems experience an intera
potential-well depth of29kBT due to the depletion forces
and are sheared until the steady-state regime is achieved
a wide range of shear rates. The total relative visco

FIG. 4. Rheology at 50% volume fraction where the hydrod
namics is approximated by the squeeze lubrication terms andUmin

529kBT: system size effects are investigated~a! for N550, 200,
and 700 particles in a simulation cell. For the 200-particle sys
~b!, contributions to the total viscosity are from the Hookeanh r

PR,
depletionh r

PA, and squeezeh r
H forces, respectively.
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matches qualitatively experimental curves@28#: there is shear
thinning over this range ofW, with the high shear relative
viscosity h` being reached at the end of the shear-thinn
curve. We only see shear thickening with this strength
aggregating force at the very highest shear rates~at 50%,
W51000/Q!. The curve has an effective plateau over a wi
range of~high! shear rates. It is clear that system-size effe
become increasingly pronounced as we lower the numbe
particles per unit cell. This can be explained due to limiti
factors affecting the size of dominant, stress-bearing clus
@17#.

The individual components contributing to the total re
tive viscosity, Fig. 4~b!, demonstrate that the dominant co
tribution to the curve is that of the Hookean term~repulsive
interparticle force contributionh r

PR!. In contrast, the com-
mon ingredient in most theories is the stretching and bre
ing of elastic bonds; while this is certainly occurring, th
results here suggest that over a range of concentrations
ied ~45–53 %!, the dominant positive contribution to the vis
cosity comes from the compression of particle surfa
and/or coats. The depletion term~attractive interparticle
force contributionh r

PA! contributes negatively overall to th
viscosity, approaching zero as the end of the shear-thinn
curve is reached. The squeeze term~hydrodynamic contribu-
tion h r

H!, however, changes sign from low to higher she
rates and then continues to rise gradually with increas
shear rate. The overall contributions from the squeeze
the depletion terms are negligible in comparison with t
Hookean contribution throughout the shear-thinning regi
At first sight, this is quite puzzling, as there is clearly
effect from the aggregating forces on the viscosity value
compare the aggregation viscosity data with that of the n
aggregating systems’ results in Fig. 3. This will be furth
discussed below. The shear thickening is due to an incr
ing hydrodynamic contribution at the higher shear rates.

Figure 5 examines the variation of viscosity with volum
fraction. Again, these simulations were carried out with t
hydrodynamic interactions approximated by the sque
term only and without Brownian forces. The aggregation p
tential has its minimum at roughly29kBT, and the compu-

-

FIG. 5. The dependence ofh r , as a function ofW, on f(0.45
<f<0.53) at the squeeze level of approximation for 200 partic
The inset shows how the scaled data collapses, resulting in
shear-thinning exponenta50.7560.02.
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tational box contains 200 particles in all cases. Here
study three volume fractions,f50.45, 0.50, and 0.53. As
expected, the viscosity increases with increasing colloid c
centration and each curve approaches a different value
h` , although this fact is not resolved on the scale of Fig
For each volume fraction, each curve can be scaled w
respect to its high-shear-rate viscosity. The inset shows
scaled data, for all three volume fractions, on a log-log p

We would anticipate that the full rheology curve mig
obey a Hershel-Buckely constitutive relation, but we do n
shear at low enough rates to see the first Newtonian plat
In the regime studied, the data obeys a Sisko@37# constitu-
tive relation. When the viscosity is reduced according to t
relation, the whole data set, for this range in volume fracti
collapses onto one curve~inset of Fig. 5!. The shear-thinning
exponent is calculated to bea50.7560.02. This is indica-
tive of a power-law fluid, with relative viscosity related t
shear rate likeh r;ġ20.75. Thus we conclude that our sys
tems behave as power-law, shear-thinning fluids withuniver-
sal behavior over this range of volume fraction. The chan
in slope noticeable forf50.53 ~far right of inset! coincides
with the ordering of particles into the string phase at th
shear rates. See Sec. III B and Fig. 9.

We now test whether this behavior is independent~within
the scope of the model! of the details of the hydrodynami
interactions included. This includes studies of aggrega
systems where the hydrodynamics is approximated by o
the squeeze terms, squeeze terms and rotational hydr
namical modes, and finally squeeze and rotation hydro
namicsand Brownian forces. Figure 6 presents the rheolo
curves for these systems.

Again we see the expected occurrence of shear thinn
and a leveling off at high shear rates as before. In compa
the effects of the details of the hydrodynamic model, we fi
that the inclusion of the rotation terms in the near-field a

FIG. 6. h r as a function ofW at f50.45 (Q51050.0). The
comparison is made between different hydrodynamic models.
squeeze-only model incorporates hydrodynamic interactions tha
between particles whose relative velocities are directed along
line of centers. The squeeze and rotation model incorporates
squeeze terms as well as those lubrication interactions arising
the transverse motion of neighboring particles. Finally, the sque
rotation, and Brownian motion model includes the hydrodynam
modes as above with the inclusion of Brownian forces. The in
shows that the scaling betweenh r and W is approximately un-
changed with hydrodynamic model.
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proximation results in slightly higher computed viscositi
~10–20 % increase over that of the squeeze-only sim
tions!. These additional dissipative terms will lend addition
variations in the local structures within the bulk and it is n
unreasonable to expect slight variations in the viscous
sponse of the system. The direct Brownian contribution
the viscosity is positive. However, at low shear rates in
regime where Brownian forces are non-negligible, the ov
all effect of the Brownian term is to lower the compute
viscosities through the indirect effect it has on the viscos
contributions of the other forces, particularly the domina
Hookean term. The effect is to lower their computed valu
compared with those simulations that neglect Brown
forces. Physically, we reason that this is due to the eff
Brownian forces have on the kinetics of the particle stru
tures in the system. As mentioned above, aggregated sys
under shear gain structural rigidity due to the extended p
ticle networks that form as a consequence of the attrac
forces between the particles. However, the effect of incl
ing Brownian forces is to disrupt these particle structures
enhance the rupture of the networks under shear, thus
ering the viscosity.

We see that from the scaled log-log plot, these variatio
in the model again collapse onto one curve. A fit of this li
gives a value fora50.7860.04. In general, we do expec
the shear-thinning exponent to be sensitive to the model
tails @17#, but within the scope of these studies the expon
appears to vary only within the margin of error.

We now pursue a direct quantitative comparison with
well controlled experimental work carried out by Busca
McGowan, and Morton-Jones@28#. The experimental curve
is for a system where the aggregating well depth was e
mated to be218kBT @28#, and Fig. 7 shows simulation-dat
fits to this curve. We simulate systems withweakaggregat-
ing interaction potentials,Umin529kBT (Q51050.0),Umin
5218kBT (Q53000.0), and also strong aggregating inte
action potentials,Umin5268kBT (Q57500.0). We see tha
with our simple model, the simulation only fits the expe
mental data in the limit of very strong aggregating forc
(Q57500.0) which for the depletion potential is unphys

e
ct
ir

he
m
e,
c
t

FIG. 7. Comparison ofh r for concentrated aggregating suspe
sions determined by simulation, with varying interaction w
depths~open symbols!, with well controlled experimental results b
Buscall, McGowan, and Morton-Jones@28# with an estimated well
depth of222kBT ~solid line!. There is agreement only at the ver
deepest simulation well depth (Q57500).
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cally large—we will discuss this failing below. We note th
there is, however, agreement between the simulation and
periment in the shear-thinning exponent,aexpt50.8760.01
compared withasimulation50.8660.03. At this high potential,
the shear-thinning exponent is altered.

A normal stress-differences plot is shown in Fig. 8. Th
data is taken from a system at 50% volume fraction wh
the hydrodynamics is modeled on the squeeze interact
and an aggregating well depth of29kBT. The two normal
stress differences,N1 andN2 , are defined as@1#

N15sxx2syy , ~18a!

N25syy2szz, ~18b!

where the shear flow imposed is in thex direction with gra-
dient along they direction. Initially the two dimensionles
normal stress differences stay close to zero. It is question
whether this is because there is no definable structure
this range of shear rate or because there exist isotropic s
tures in the flow. At intermediate shear ratesW51/Q, both
N1 and N2 become slightly negative. At higher shear rat
the normal stress differences become markedly more n
tive, coincident with the initial formation of the string a
rangement at this shear rate.N1 then recovers and become
positive. This last effect is due to the gradual melting of t
string phase at the highest shear rates. The interparticle
begin to collapse and logarithmic shear thickening is se
The generic shape of this curve is indicative of the chang
the microstructure as the particles suffer increasing sh
stresses.

B. Microstructure

1. Strings and bands

We now proceed to qualitatively investigate the micr
structure under several flow conditions and shear rates
line with the preceding subsection, Fig. 9 shows snapsho
particle configurations taken at 50% volume fraction, t
same systems studied in Fig. 4. These systems contain

FIG. 8. Variation of the two dimensionless normal stress diff
encesN1 andN2 with shear rate, for 200 particles atf50.50. They
both remain close to zero until high shear rates are reached. A
string phase is approached, bothN1 andN2 dip, but as the strings
begin to melt and the particle gaps collapse,N1 becomes positive.
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particles in a computational box. The structure looks hom
geneous, in Fig. 9~a!, until high shear rates are approach
when the string phase is reached. These qualitative feat
suggest that the ordering of particles is not responsible
the shear-thinning effect. Figure 9~a! is taken halfway down
the shear-thinning curve, whereas 9b! corresponds to a poin
on the right side of the rheology curve from Fig. 4. In th
string phase, the particles flow in ‘‘tubes’’ aligned parallel
the imposed flow direction as in Fig. 9~b!. The overall ar-
rangement of these tubes is hexagonal.

At lower volume fractions, below 45%, there is a dras
change in the behavior of the model suspensions, effectiv
a loss of constitutive rheology. For the lower volume fra
tions studied here, 30–40 %, the systems tend to exh
shear banding. An example of a banded configuration of
particles at shear rateW55/Q is shown in Fig. 10~a!; as the
shear rate is increased, the banded configuration is torn a
by the flow as shown in Fig. 10~b! at W5100/Q. Banding
phenomena such as this are extremely interesting facet
complex fluids under flow. Others have found this kind
behavior in simulations of pressure-driven flows of ha
sphere suspensions@38#. Figure 11 shows the stress–shea
rate curve for the shear-banding system that follows qua
tively previously calculated curves@39#. The inset gives the
typical velocity profile across the computational box for
banded system. Here the velocity profile for Fig. 10~a! is
shown.

-

he

FIG. 9. Typical microstructural snapshots, taken looking do
the flow direction, for systems at 50% volume fraction with 2
particles (Q51050.0).~a! For W,Wstring (W51.0/Q) the appear-
ance is of a homogeneous distribution of particles with no obvi
ordering~particles drawn at half size for clarity!. ~b! Above a cer-
tain shear rateWstring (W5250.0/Q), the particles flow in string
formation ~particles drawn at full size!.

FIG. 10. Snapshots looking down the flow direction where
particles are drawn at half size at 40% for~a! a banded configura-
tion of 700 particles at intermediate shear rates (W55.0/Q); ~b!
200 particles at high shear rates, where the banding has been b
up by the flow (W5100.0/Q).
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2. Angular decomposition of the stress tensor

Unlike many models, our particles are given a strong
pulsive force on their surfaces which we found to make
dominant contribution to the shear stress. On the face o
the attractive forces make a small contribution; yet, as
stresses are greatly enhanced over the case without th
gregating forces, this cannot in detail be the case. In
section we further analyze the different contributions to
stress to understand this dilemma. In Fig. 12, we plot
distribution of shear stress tensor per pair of interacting p
ticles analyzed with respect to the orientation of the part
pair and the contributing interaction. For each interact
pair over many configurations, we projected the partic
center–to–particle-center vector onto the shear-gradient
plane and resolved data according to the angle formed
tween the projected vector and the shear-gradient axis,
angle of 0° being parallel to the shear-gradient axis~see Fig.
2!. The contributions to the stress tensor, as defined in
~16!, are shown, namely, the Hookean repulsive term,
depletion term, and thesqueezehydrodynamics term. Wha
we find, in Fig. 12, is that the directions along which t
Hookean and depletion contributions are largest are
shear-compressionaland the shear-extensionaldirections, re-
spectively. The Hookean term contributes highlypositively

FIG. 11. Behavior of the stress with shear rate at 40% volu
fraction where shear banding takes place over intermediate s
rates. The stress is nonmonotonic. The velocity profile, in u
where the shear rate and particle diameter are both set to u
across the box~bottom to top is left to right on the axis! for Fig.
10~a!.

FIG. 12. Decomposition of the viscosity component of the str
tensor with respect to~w.r.t.! particle bond angle, with 0° being
parallel to the shear-gradient axis. The contributions to the st
are the squeeze, Hookean, and depletion terms. The compress
and the extensional directions are seen to be dominant.
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to the viscosity along thecompressionaldirection, but nega-
tively along the extensional direction. However, their angu
integral gives an overall dominant positive contribution
the viscosity, as shown in Fig. 4~b!. In contrast, while the
magnitude of the attractive contributions at each angle
individually of the same order of magnitude as the repuls
component and their signs are opposite, their angular inte
is close to unity. The hydrodynamic squeeze force cont
utes both positively and negatively in both the extensio
and compressional directions. This is possible because
squeeze interaction is dependent on the relative velocitie
the particle pair. Overall, however, the squeeze force cont
utes positively to the total viscosity.

IV. SUMMARY AND DISCUSSION

We must emphasize that due to the reduced hydro
namic interactions, the model may fail to represent well
physics of the real system. However, it is clear that the c
servative colloid interactions dominate the stress, so the
accurate estimates of the hydrodynamic contributions m
not be significant in themselves. The neglect of fluid pum
ing in the general pore space around the particles is likely
be significant for aggregate deformations, but we assume
is not important at the concentrations studied. Of course,
true hydrodynamics may give qualitatively different partic
flows.

Nevertheless, we do gain some insight from the mod
We have seen how the inclusion of an aggregating poten
greatly enhances the viscosity of a suspension comp
with that of a nonaggregating system. It has been shown
for these concentrated systems there exists a regime o
proximate universal power-law shear-thinning behavior o
the range of volume fraction 0.45<f<0.53 for weak aggre-
gation potentials with exponents close to those of exp
ment. We note that these exponents vary only very sligh
across different varieties of the model, in particular acro
what must be a significant qualitative change in the part
motions: turning the shear modes and particle rotation on
off. This is all, at least,suggestive that the missing hydrod
namic features will not alter these exponents. The exponents
do, however, change for more strongly aggregating pot
tials.

The model failed to quantitatively predict the experime
unless unrealistically high potentials are introduced. T
may be due to the missing hydrodynamic terms. Howev
this would require an order-of-magnitude-larger hydrod
namic contribution than that in the current model—we dou
that this is reasonable: if we estimate the full hydrodynam
contributions from that for Brownian hard spheres at the v
ume fractions and flow conditions of interest, this only i
creases the small hydrodynamic contribution in the res
above by some 20–30 %. There is another important fea
neglected in the model: the experimental particles hav
polymer coat on their surfaces, and the aggregating for
determine that the particles will have these coats in cont
Contacting coats will greatly enhance the local viscous in
actions between spheres@40#. We have made preliminary
calculations which show that the viscosity values of the
periments can be computed with realistic potentials in
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range of the polymer coats and we will report on this in t
near future@41#. A second reason may be that the real syst
feels the stronger van der Waals attraction, but evidence
degree of irreversible aggregation on shear was not repo
in the experiments of Ref.@28#.

The model showed shear banding in systems at the lo
volume fractions studied,f<0.40. In such systems the stre
is shown to be nonmonotonic with increasing shear rate
rest our systems are phase separating; this is therefo
shear-induced orientation of thermodynamically driven se
ration rather than a shear-induced banding of a stable t
modynamic system. This may be a false prediction for a r
colloid system because it is clear that it will be sensitive
the full hydrodynamics we have excluded. Since we appro
mate the hydrodynamic interactions between particle pair
a pair drag, the gross separations that occur with shear b
ing call into question the validity of the model, and inde
we do find that the occurrence of shear banding is depen
on the details of the model. In particular, the inclusion
Brownian forces at 40% volume fraction with Brownia
forces ‘‘switched on,’’ the systemsdo not shear band@Fig.
13~a!#; however, Figure 13~b! shows a system at 30%with
Brownian forces switched on, and here we do see evide
of shear banding. Evidently, as we decrease the volume f
tion there is an increased sensitivity to shear banding. F
the theoretical point of view, a model showing shear band
is interestingper se. Shear banding has been studied, in
theoretical context, for polymers and wormlike micelles
high shear rates@39#. Symmetry suggests that bands m
form in steady states normal to either the gradient direc
or the vorticity direction. The orientation of shear banding
the model here~normal to the gradient direction! is not that
found for free-draining models@9# ~normal to the vorticity
axis! at intermediate shear rates with the same potent
This suggests that the orientation requires global
, J
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plication of the shear field—through true Lees-Edwar
boundary conditions as above, and that it is sensitive to a
ficial coupling to a background affine flow field as in th
free-draining model.

Understanding the nature of concentrated aggregating
tems under shear has been tackled here. We provide imp
for further work, including a theoretical challenge to eluc
date the microstructural behavior of such colloidal syste
@16,17#, the role of surfaces@41#, and shear-banding effects
Models far closer to physical systems than previous wo
@9,14,20# have been simulated, to a certain degree, show
behavior close to universal. More complete hydrodynam
and more realistic surface models are needed before com
hensive predictions can be made.
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FIG. 13. Snapshots of 200 particles with Brownian motion
cluded at~a! 40% compared with~b! banding at 30%~both atW
51/Q!.
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